总浏览量:539.52万
土木工程 高性能混凝土的发展和应用(模板)【论文包查重包过】

时间:2022-07-26 18:13来源:本站作者:点击: 583 次

可做奥鹏院校所有作业、毕业论文咨询请添加 QQ:3082882699
微信:jd958787

大连理工大学网络教育学院

文(设 计)

                                          

                                        

题    目   高性能混凝土的发展和应用   

 

 

学习中心:                    

                 层    次:     专科起点本科     

专    业:       土木工程     

年    级:        年  季       

学    号:                  

学    生:                      

指导教师:                   

完成日期:   2022年7月26日    

  

内容摘要

 

随着我国改革开放和现代化进程的加快,我国的建设规模正日益增大,如何保证建筑工程质量的同时也能使工程能长久的安全使用下去,日益受到各级政府和社会各界的广泛关注。在众多的土木工程建设中,混凝土的应用面之广,使用次数之多是很少见的。本文主要介绍了高性能混凝土发展的现状,阐明了高性能混凝土与施工的关系,列举了高性能混凝土的运用成果,并对其发展趋势作出展望。随着我国建筑向高层化、大型化、现代化的发展,HPC必将成为新世纪的重要建筑工程材料。

 

关键词:高性能混凝土;运用;发展

 


 

目     录

内容摘要... I

   ... 1

绪论... 1

典型高性能混凝土的特点及工程应用... 3

2.1  典型高性能混凝土的特点... 3

2.2  高性能混凝土的工程应用... 4

2.2.1  高性能混凝土的原材料及配合比... 4

2.2.2  绿色高性能混凝土的工程应用范围... 5

2.2.3  机敏性高性能混凝土的工程应用范围... 6

新型绿色高性能混凝土的研究及工程应用... 8

3.1  高性能混凝土绿色化的途径... 8

3.2  绿色高性能混凝土的发展展望... 9

工程实例分析... 10

4.1  工程概况... 10

4.2  高性能混凝土的设计思路... 10

4.3  高性能混凝土配合比试验... 10

4.3.1  原材料的技术要求... 11

4.3.2  配合比设计主控项目... 11

4.3.3  配合比的确定... 11

4.4  工程应用... 12

结论与展望... 14

参考文献... 15

 


 

引   言

从1824年波特兰水泥发明开始,混凝土材料至今已有100多年的历史,以水泥为胶结材的混凝土也取得了具大的发展,由普通混凝土向高性能混凝土发展。从20世纪以来,混凝土就己成为房屋建筑、桥梁、水利、公路等现代工程结构首选材料,混凝土作为土木工程中最大宗的人造材料,其用量巨大。据统计,当今我国每年混凝土用量约109m3,并且随着我国近年来工业化、城市化进程的加快,其用量将继续快速增长。人类进入21世纪,随着科学技术的快速发展,一种又一种新型混凝土涌现出来。混凝土能否长期作为最主要的建筑结构材料,其本身必须具有高强度、高工作性、高耐久性等性能,因此高性能混凝土是现代混凝土技术发展的必然结果,是混凝土的发展方向。

高性能混凝土(High Performance Concrete,HPC)是20世纪80年代末90年代初,一些发达国家基于混凝土结构耐久性设计提出的一种全新概念的混凝土,它以耐久性为首要设计指标,这种混凝土有可能为基础设施工程提供100年以上的使用寿命。区别于传统混凝土,高性能混凝土由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程中显示出其独特的优越性,在工程安全使用期、经济合理性、环境条件的适应性等方面产生了明显的效益,因此被各国学者所接受,被认为是今后混凝土技术的发展方向。

本文主要分为六个部分:第一部分为引言,对本文的研究背景、研究意义、研究内容等进行概述。第二部分为绪论,对本文的相关理论基础的内容进行总结和归纳。第三部分为典型高性能混凝土的特点及工程运用,主要研究两个方面,分别是典型高性混凝土的特点和应用。第四部分为新型绿色高性能混凝土的研究及工程应用,对高性能混凝土绿色化的途径以及发展展望进行研究。第五部分为工程实例,通过案例分析的方式为高性能混凝土在高层建筑中的应用提供支撑。第六部分为结论,对全文进行总结。


 

1  绪论

当代大跨、高层、海洋、军事工程结构的发展对混凝土提出的更高的要求处在恶劣环境下既有建筑不断劣化、退化导致过早失效、退役甚至出现恶性事故造成巨大损失的严重后果原材料生产、开采造成的生态环境恶化以及砂石料枯竭、资源短缺严重影响进一步发展的严酷现实。这就要求混凝土不断提高以耐久性为重点的各项性能多使用天然材料及工业废渣保护环境走可持续发展的道路高性能混凝土就是在这种背景下出现并逐步完善与发展的。

混凝土作为用量最大的人造材料,不能不考虑它的使用对生态环境的影响。传统混凝土的原材料都来自天然资源。每用1t水泥,大概需要0.6t以上的洁净水,2t砂、3t以上的石子;每生产1t硅酸盐水泥约需1.5t石灰石和大量燃煤与电能,并排放1tCO2,而大气中CO2浓度增加是造成地球温室效应的原因之一。尽管与钢材、铝材、塑料等其它建筑材料相比,生产混凝土所消耗的能源和造成的污染相对较小或小得多,混凝土本身也是一种洁净材料,但由于它的用量庞大,过度开采矿石和砂、石骨料已在不少地方造成资源破坏并严重影响环境和天然景观。有些大城市现已难以获得质量合格的砂石。另一方面,由于混凝土过早劣化,如何处置费旧工程拆除后的混凝土垃圾也给环境带来威胁。

因此,未来的混凝土必须从根本上减少水泥用量,必须更多地利用各种工业废渣作为其原材料;必须充分考虑废弃混凝土的再生利用,未来的混凝土必须是高性能的,尤其是耐久的。耐久和高强都意味着节约资源。“高性能混凝土”正是在这种背景下产生的。

针对混凝土的过早劣化,发达国家在20世纪80年代中期掀起了一个以改善混凝土材料耐久性为主要目标的“高性能混凝土”开发研究的高潮,并得到了各国政府的重视。从20世纪80年代开始,各国混凝土结构设计规范中逐渐突出了耐久设计的考虑,从只重视强度设计向强度与耐久性并重。进入20世纪90后代以后,混凝土结构耐久性设计方法成为土木工程领域中的研究重点。针对不同环境类别的侵蚀作用,提出材料性能劣化的理论或经验模式,并据此估算结构的使用寿命,成为发展和研究耐久性设计方法的主流。目前,高性能混凝土的发展有以下几个方向:

(1)绿色高性能混凝土

水泥混凝土是当代最大宗的人造材料,对资源、能源的消耗和对环境的破坏十分巨大,与可持续发展的要求背道而驰。绿色高性能混凝土研究和应用较多的是粉煤灰混凝土,粉煤灰混凝土与基准混凝土相比,大大提高了新拌混凝土的工作性能,明显降低混凝土硬化阶段的水化热,提高混凝土强度特别是后期强度。而且,节约水泥,减少环境污染,成为绿色高性能混凝土的代表性材料。

(2)超高性能混凝土

超高性能混凝土,如活性粉末混凝土,其特点是高强度,抗压强度高达300MPa,且具有高密实性,已在军事、核电站等特殊工程中成功应用。

(3)智能混凝土

智能混凝土是在混凝土原有的组分基础上复合智能型组分,使混凝土材料具有自感知、自适应、自修复特性的多功能材料,对环境变化具有感知和控制的功能。随着损伤自诊断混凝土、温度自调节混凝土、仿生自愈合混凝土等一系列机敏混凝土的出现,为智能混凝土的研究、发展和智能混凝土结构的研究应用奠定了基础。


 

典型高性能混凝土的特点及工程应用

高性能是在1990年的一次国际会议上对混凝土提出的新的要求。而高性能混凝土也是今后混凝土技术发展的一个基本方向。对高性能混凝土的定义,国内外的提法不尽相同,但概括起来,可以归结为以下五个方面:

1、 高耐久性,能在正常使用环境下具有超长的使用年限和较小的维护费用;在特殊要求的使用条件下,能满足抗侵蚀、抗冻融等抵抗恶劣使用环境下的特殊要求。

2、  高施工性能,能在具体的施工条件下,顺畅地完成混凝土的运送和浇注,能得到密实性和均匀性优越的混凝土结构。

3、  较高强度,能满足设计承载力所提出的强度要求,且具有足够的后期强度增长能力,并保证在正常使用条件下的强度要求。

4、  高体积稳定性,混凝土凝结前不分层、不离析,硬化后体积变化小,具有较好的抗裂能力。

5、  能满足环境保护和可持续发展的要求。

本章主要对高性能混凝土的主要发展动向进行讨论,重点分析其特点和工程应用范围。

2.1  典型高性能混凝土的特点

与普通混凝土相比,高性能混凝土具有如下独特的性能:

1.耐久性。高效减水剂和矿物质超细粉的配合使用,能够有效的减少用水量,减少混凝土内部的空隙,能够使混凝土结构安全可靠地工作50100年以上,是高性能混凝土应用的主要目的。

2.工作性。坍落度是评价混凝土工作性的主要指标,HPC的坍落度控制功能好,在振捣的过程中,高性能混凝土粘性大,粗骨料的下沉速度慢,在相同振动时间内,下沉距离短,稳定性和均匀性好。同时,由于高性能混凝土的水灰比低,自由水少,且掺入超细粉,基本上无泌水,其水泥浆的粘性大,很少产生离析的现象。

3.力学性能。由于混凝土是一种非均质材料强度受诸多因素的影响,水灰比是影响混凝土强度的主要因素,对于普通混凝土,随着水灰比的降低,混凝土的抗压强度增大,高性能混凝土中的高效减水剂对水泥的分散能力强、减水率高,可大幅度降低混凝土单方用水量。在高性能混凝土中掺入矿物超细粉可以填充水泥颗粒之间的空隙,改善界面结构,提高混凝土的密实度,提高强度。

4.体积稳定性。高性能混凝土具有较高的体积稳定性,即混凝土在硬化早期应具有较低的水化热,硬化后期具有较小的收缩变形。

5.经济性。高性能混凝土较高的强度、良好的耐久性和工艺性都能使其具有良好的经济性。高性能混凝土良好的耐久性可以减少结构的维修费用,延长结构的使用寿命,收到良好的经济效益;高性能混凝土的高强度可以减少构件尺寸,减小自重,增加使用空间;HPC良好的工作性可以减少工人工作强度,加快施工速度,减少成本。前苏联学者研究

发现用C110~C137的高性能混凝土替代C40~C60的混凝土,可以节约15%~25%的钢材和30%~70%的水泥。虽然HPC本身的价格偏高,但是其优异的性能使其具有了良好的经济性。概括起来说,高性能混凝土就是能更好地满足结构功能要求和施工工艺要求的混凝土,能最大限度地延长混凝土结构的使用年限,降低工程造价。

2.2  高性能混凝土的工程应用

如前所述,高性能混凝土的工程应用已经有了较大的发展,但是由于我国的现状,各种方法和技术还相对落后,仍需要在工程实践中不断使用和检验。因此,本节主要阐述的是高性能混凝土的材料要求、工程应用范围以及简单应用实例。

2.2.1  高性能混凝土的原材料及配合比

在以往的配合比设计方法中,是按混凝土的强度等级要求计算水灰比,而现在则是按耐久性的要求,首先根据环境作用等级确定电通量指标,由此来选择水胶比、控制胶凝材料最小用量以及掺和料的比例。由于客专隧道的衬砌和仰拱设计强度等级为C30或C35,一般来说,为满足电通量要求和水胶比限值要求,混凝土的强度一般都是超强的。

在进行配合比参数设计时,为保证混凝土的耐久性,混凝土中胶凝材料总量应处在一个适宜范围内,不仅有最低限要求,同时,对于C30及以下混凝土,胶凝材料总量不宜高于400kg/m3,C35~C40不宜高于450kg/m3。铁路客运专线大力提倡使用粉煤灰、矿渣粉等矿物掺和料,与普通硅酸盐水泥一起作为胶凝材料。使用粉煤灰等矿物掺和料,并不是单纯地考虑降低混凝土成本,首先是为了混凝土耐久性的需要,特别是可以有效改善混凝土抵抗化学侵蚀的能力(包括氯化物侵蚀、硫酸盐侵蚀、碱骨料反应等)。国内外的大量研究表明,粉煤灰的掺量在20%以上时,改善混凝土耐久性的效果较佳,更有研究资料表明,粉煤灰的最大掺量可达到50%左右。在《铁路混凝土结构耐久性设计暂行规定》中明确规定,一般情况下,矿物掺和料掺量不宜小于胶凝材料总量的20%,当大于30%时,混凝土的水胶比不得大于0.45。

含气量的要求也是客运专线高性能混凝土与普通混凝土的重要区别之一。以往工程仅在有抗冻要求时才考虑适当提高混凝土的含气量,这是对混凝土耐久性的规律认识不足的表现。实际上,混凝土中适量的引气,不仅能改善抗冻性,同时可显著减轻混凝土的泌水性,使水在拌合物中的悬浮状态更加稳定,从而提高混凝土材料的均匀性和稳定性。因此,客运专线规定,即使配制非抗冻混凝土时,含气量也应不小于2%,并且作为施工质量控制的必检项目之一。为适当提高混凝土的含气量,并获得较佳的减水和保塑效果,可使用新型聚羧酸盐减水剂。

该指标是客运专线对混凝土耐久性最重要、最具体的指标。目前我国尚无电通量试验的国家标准,铁路行业电通量试验方法是以美国ASTMC1202 快速电量测定方法为基础制定的,其所测指标可以最大程度地区分和评价混凝土的密实度,而密实度正是影响混凝土耐久性最为关键的因素。以往多是以抗渗性来评价混凝土的密实程度,但实践证明,抗渗试验只适合于判定较低强度等级混凝土的密实性,当强度等级超过C30后,抗渗等级几乎都能达到P20以上,再往下试验比较困难。这正是用电通量指标取代抗渗标号作为混凝土耐久性控制的主要原因。混凝土的电通量主要取决于水胶比,通过大量试验得到规律,一般水胶比小于0.5时基本可满足电通量小于2000 的要求,水胶比小于0.45时基本可满足电通量小于1500的要求。

2.2.2  绿色高性能混凝土的工程应用范围

绿色高性能混凝土是混凝土发展的方向,是我国国情的需要,是建筑工程发展的需要,是为了子孙后代造福的需要, 2005年建设部发布了《关于进一步做好建筑业10项新技术推广应用的通知》(建质〔2005〕)26号)文件中第2项既是“高性能混凝土技术”。建设部部长汪光熹在第2届国际智能绿色节能大会上表示:中国将大力开展科技创新以支援和促进行业发展,将对既有建筑节能改造成套技术,低能耗大型公关建筑技术等加快技术公关,推动以节能、节地、节水、节材和环保为核心的建筑技术发展,逐步提高绿色建筑比重。因此,研发绿色高性能混凝土体现科学发展观,是利国利民,惠及子孙之事。上述这些都为绿色高性能混凝土的研究与应用打下了良好的基础。

1997年3月的“高强与高性能混凝土”会议上,吴中伟院士首次出“绿色高性能混凝土(GHPC)”的概念,并指出: GHPC是混凝土的发展方向,更是混凝土的未来。提高混凝土的绿色度,可以节约更多的资源与能源,将对环境的破坏减到最小。人类已经进入21世纪,混凝土应该更多地掺加工业废渣掺和料,更多地节约水泥,有更高的强度和耐久性。

高性能混凝土(HPC)具有下列特征:(1)更多地节约熟料水泥,降低能耗与环境污染;(2)更多地掺加工业废料为主的细掺料;(3)更大地发挥混凝土的高性能优势,减少水泥与混凝土的用量。因此,高性能混凝土本身就可成为绿色混凝土。事实上,许多工程如大体积水工建筑、基础等对强度要求不高,但对耐久性、工作性、体积稳定性、低水化热等有很高要求,都应采用HPC。例如日本跨海明石大桥基墩混凝土(50万m3)要求高耐久性、高抗冲刷性与低升温,而强度只要求20MPa,使用的就是掺加了复合外加剂与复合细掺料的HPC。由此可见,高性能混凝土并不一定强调高强,我国目前也己完成了普通混凝土的高性能化的研究和应用。因此,传统的GHPC的应用范围可以进一步扩大,可以将欧美对HPC强度的低限50MPa降低到C30左右,原则是只要不损害混凝土的内部结构如孔结构、水化物结构与界面结构等,保证混凝土具有良好的耐久性与体积稳定性。纳米混凝土、再生混凝土、免振捣自密实高性能混凝土等都是绿色高性能混凝土。绿色高性能混凝土已被广泛应用于市政工程、民用建筑和工业建筑,与普通混凝土相比,高性能混凝土具有更好的施工性能和耐久性,同时可以更多地利用工业废渣及其它废弃物,有良好的经济指标和环保意义,因此,绿色高性能混凝土是混凝土的发展方向。

2.2.3  机敏性高性能混凝土的工程应用范围

自诊断智能混凝土具有,压敏性和温敏性等性能。普通的混凝土材料本身并不具有自感应功能,但在混凝土基材中掺入部分导电相组分制成的复合混凝土可具备自感应性能。目前常用的导电组分可分为3类:聚合物类、碳类和金属类,而最常用的是碳类和金属类。碳类导电组分包括石墨、碳纤维及碳黑;金属类材料则有金属微粉末、金属纤维、金属片及金属网等。自调节机敏混凝土具有电力效应和电热效应等性能。Whitman FH在1973年首先研究了力由变形产生电、电力,由电产生变形效应。Whitman FH在做水泥净浆小梁弯曲时,通过附着在梁上下表面的电极可检测到电压,且对其逆反应一电力效应进行了研究,发现梁产生弯曲变形,改变电压的方向时,弯曲的方向也发生相应的变化。

机敏混凝土的力电效应、电力效应是基于电化学理论的可逆效应,因此将电力效应应用于混凝土结构的传感和驱动时,可以在一定范围内对它们实施变形调节。例如,对于平整度要求极高的特殊钢筋混凝土桥梁,可通过机敏混凝土的电热和电力自调节功能进行调节由于温度自重所引起的蠕变;机敏混凝土的热电效应使其可以方便的实时检测建筑物内部和周围环境温度变化,并利用电热效应在冬季控制建筑物内部环境的温度,可极大的促进智能化建筑的发展。

混凝土结构在使用过程中,大多数结构是带裂缝工作的。含有微裂纹的混凝土在一定的环境条件下是能够自行愈合的,但自然愈合有其自身无法克服的缺陷,受混凝土的龄期、裂纹尺寸、数量和分布以及特定的环境影响较大,而且愈合期较长,通常对较晚龄期的混凝土或当混凝土裂缝宽度超过了一定的界限,混凝土的裂缝很难愈合。国内的研究表明,掺有活性掺和料和微细有机纤维的混凝土破坏后其抗拉强度存在自愈合现象;国外研究混凝土裂缝自愈合的方法是在水泥基材料中掺人特殊的修复材料,使混凝土结构在使用过程中发生损伤时,自动利用修复材料(粘结剂)进行恢复甚至提高混凝土材料的性能。美国伊利诺伊斯大学的Carolyn Dry采用在空心玻璃纤维中注入缩醛高分子溶液作为粘结剂,埋人混凝土中,制成具有自修复智能混凝土。当混凝土结构在使用过程中发生损伤时,空心玻璃纤维中的粘结剂流出愈合损伤,恢复甚至提高混凝土材料的性能。

 

 

 


3  新型绿色高性能混凝土的研究及工程应用

混凝土能否长期作为最大宗的建筑结构材料,关键在于能否成为绿色材料,绿色高性能混凝土应具有以下特征,更多地节约熟料水泥,减少环境污染,更多地掺加工业废渣为主的细掺料,更大地发挥高性能的优势,减少水泥与混凝土用量。

混凝土的绿色含量,着眼于混凝土的可持续发展,绿色高性能混凝土由于具有良好的性能与环境协调性,已成为混凝土产业未来发展方向。

本章主要就一些新型绿色高性能混凝土进行详细分析,阐述其主要概念、绿色化途径、优缺点及发展展望等内容。

3.1  高性能混凝土绿色化的途径

从20 世纪70 年代起日本、法国、德国等就陆续开始研究将混凝土废弃物作为混凝土的骨料使用。在德国、美国,目前再生混凝土主要用于公路工程;法国利用废混凝土和废砖生产出了再生混凝土砌块;1977年日本政府就制定了《再生骨料和再生混凝土使用规范》,并相继在各地建立了以处理混凝土废弃物为主的再生加工厂,生产再生水泥和再生骨料,其生产规模最大的每小时可加工生产100 t。我国对再生混凝土的开发研究大多还处在实验室研究阶段,混凝土结构物的废弃、解体高峰还没有到来。但也已经开始有专门从事建筑垃圾再生骨料的产业报道以及相应地方标准的出台。例如,由四川省建材工业科学研究院等单位起草完成的四川省地方标准DB51/T863-2008《地震损毁建筑废弃物再生骨料混凝土实心砖》已通过四川省经委、质监、建设和卫生部门审查,于2008年12 月10 日开始实施。

对于环境友好型生态混凝土,目前相关的技术途径主要有以下3 条:①通过固体废弃物的再生利用来降低混凝土生产过程中的环境负担;②通过提高混凝土的耐久性来提高建筑物的寿命从而降低混凝土在使用过程中的环境负荷;③通过改善混凝土的性能来降低其环境负担和环境影响。目前生物相容型生态混凝土主要是利用多孔混凝土孔隙部位的透气、透水等性能,要么是渗透植物所需营养种植小草、低灌木等植物,用于河川护堤的绿化,美化环境;要么是让陆生和水生小动物附着栖息在其凹凸不平的表面或连续孔隙内,通过相互作用或共生作用,形成食物链,为海洋生物和淡水生物生长提供良好条件,保护生态环境。或者是利用多孔混凝土外表面对各种微生物的吸附,通过生物层的作用产生间接净化水质的功能。

目前水泥、混凝土行业对工业废弃物的利用大致分5个方面:①以具有潜在水硬性的废渣作混合材,生产通用硅酸盐水泥或用以制备混凝土高活性细掺料。比如,煤矸石、粉煤灰、炉渣、冶铁废渣、部分金属尾矿等。对于一些活性较高的工业废渣,如矿渣等,还可用来生产无熟料水泥;②如磷石膏、氟石膏、盐田石膏、环保石膏等用做水泥调凝剂;③以各种废渣作为替代原料、燃料或矿化剂,烧制熟料或特种水泥,并有可能降低熟料煅烧能耗,提高水泥质量。比如粉煤灰、煤矸石、炉渣、金属尾矿、赤泥等可代替黏土做烧制水泥组分配料。磷石膏、氟石膏、盐田石膏、环保石膏、电石渣、柠檬酸渣等可代替石膏做矿化剂;④作混凝土掺合料或改性材料;⑤用作很多混凝土制品尤其是砖和砌块的原材料。

3.2  绿色高性能混凝土的发展展望

19973月的“高强与高性能混凝土”会议上吴中伟院士首次出“绿色高性能混凝土(GHPC) ”的概念并指出: GHPC是混凝土的发展方向更是混凝土的未来。提高混凝土的绿色度可以节约更多的资源与能源将对环境的破坏减到最小。人类已经进入21世纪混凝土应该更多地掺加工业废渣掺和料更多地节约水泥有更高的强度和耐久性。高性能混凝土(HPC)具有下列特征

(1)更多地节约熟料水泥降低能耗与环境污染

(2)更多地掺加工业废料为主的细掺料

(3)更大地发挥混凝土的高性能优势减少水泥与混凝土的用量。因此高性能混凝土本身就可成为绿色混凝土。事实上许多工程如大体积水工建筑、基础等对强度要求不高但对耐久性、工作性、体积稳定性、低水化热等有很高要求都应采用HPC。例如日本跨海明石大桥基墩混凝土(50m3要求高耐久性、高抗冲刷性与低升温而强度只要求20MPa使用的就是掺加了复合外加剂与复合细掺料的HPC。由此可见高性能混凝土并不一定强调高强我国目前也己完成了普通混凝土的高性能化的研究和应用。因此传统的GHPC的应用范围可以进一步扩大可以将欧美对HPC强度的低限50MPa降低到C30左右原则是只要不损害混凝土的内部结构如孔结构、水化物结构与界面结构等保证混凝土具有良好的耐久性与体积稳定性。纳米混凝土、再生混凝土、免振捣自密实高性能混凝土等都是绿色高性能混凝土。绿色高性能混凝土已被广泛应用于市政工程、民用建筑和工业建筑与普通混凝土相比高性能混凝土具有更好的施工性能和耐久性同时可以更多地利用工业废渣及其它废弃物有良好的经济指标和环保意义因此绿色高性能混凝土是混凝土的发展方向。


需要奥鹏作业答案请扫二维码,加我QQ

添加微信二维码,了解更多学习技巧,平台作业、毕业论文完成时间友情提醒。不再错过任何作业论文。